
surplus on wheels (s+ow)

surplus on wheels is a pure shell script to get your location using termux-location, process it through

surplus, and send it to messaging service or wherever using “bridges”

surplus was made to emulate sending your location through the iOS Shortcuts app, and surplus on wheels

complements it by running surplus automatically using a cron job. (but using it manually also works!)

installing

s+ow is a Termux-first script, and will not work anywhere else unless you have a utility that emulates

termux-location on $PATH alongside bridges that supports your platform

there are two notable ways to install s+ow:

�. as a standalone script

�. or, as a cron job

there is also an installation script for quickly ge�ing started from a fresh termux installation

as a standalone script

�. firstly install python and termux-api if you haven't already:

also install the accompanying Termux:API app from F-Froid

�. install pipx if you haven't already:

�. install surplus:

�. install surplus on wheels:

Important

pkg install python termux-api

pip install pipx

pipx install surplus

mkdir -p ~/.local/bin/

wget -O ~/.local/bin/s+ow https://surplus.joshwel.co/spow.sh

chmod +x ~/.local/bin/s+ow

https://wiki.termux.com/wiki/Termux-location
https://wiki.termux.com/wiki/termux-location
https://f-droid.org/en/packages/com.termux.api/

if wget throws a 404, see backup links

if ~/.local/bin is not in your $PATH , add the following to your shell's rc file:

et voilà! s+ow is now setup. to actually send the message to a messaging platform, install an appropriate

bridge

as a cron job

these instructions rely on following the previous instructions

�. install necessary packages to run cron jobs:

�. restart termux and start the cron service:

�. set up the cron job:

run the following command:

and add the following text:

minimally fill in the SPOW_TARGETS variable before running s+ow. (see usage for more info)

this will run s+ow every hour, a minute before the hour

modify the variables as per your needs. see usage for more information

et voilà! s+ow will now send a message every hour. feel free to experiment with the cron job to your

liking. see crontab.guru if you’re new to cron jobs

Note

export PATH="$HOME/.local/bin:$PATH"

Important

pkg install cronie termux-services

sv-enable cron

crontab -e

59 * * * * bash -l -c "(SPOW_TARGETS="" SPOW_CRON=y s+ow)"

Important

https://surplus.joshwel.co/links/
https://surplus.joshwel.co/onwheels/bridges/
https://surplus.joshwel.co/onwheels/bridges/
https://crontab.guru/

if you haven’t already, install an appropriate bridge to actually send a message to a messaging platform

using installation scripts

these scripts assume you're starting from a fresh base installation of Termux. if you have already cron jobs,

then manually carry out the instructions in 'as a cron job'

if not installed already, install Termux:API from F-Droid, not the Play Store

�. setup s+ow:

if wget throws a 404, see backup links

�. restart termux!

�. and finally, set up a cron job from step 3 onwards ('set up the cron job')

usage

environment variables

s+ow's behaviour can be customised environment variables, with SURPLUS_CMD being the only required

variable:

�. SPOW_TARGETS

a single line of comma-delimited chat IDs with bridge prefixes

in the example above, the WhatsApp chat ID is wa: -prefixed as recognised by the spow-whatsapp-

bridge, and the Telegram chat ID is tg: -prefixed as recognised by the spow-telegram-bridge

�. SPOW_CRON (optional)

set as non-empty to declare that s+ow is being run as a cron job

Warning

Important

wget -O- https://surplus.joshwel.co/termux.sh | sh

Note

wa:000000000000000000@g.us,tg:-0000000000000000000,...

https://surplus.joshwel.co/onwheels/bridges/
https://f-droid.org/en/packages/com.termux.api/
https://surplus.joshwel.co/links/
https://surplus.joshwel.co/onwheels/whatsapp-bridge/
https://surplus.joshwel.co/onwheels/whatsapp-bridge/
https://surplus.joshwel.co/onwheels/telegram-bridge/

if running as a cron job, start s+ow one minute earlier than intended to account for the time it takes to

run termux-location and surplus . s+ow assumes this and delays itself appropriately

se�ing it to n will also be treated as if it were empty

�. SPOW_PRIVATE (optional)

set as non-empty to discard all logs when s+ow is done:

$HOME/.cache/s+ow/out.log will be set to /dev/null

$HOME/.cache/s+ow/err.log will be set to /dev/null

$HOME/.cache/s+ow/location.net.json will be cleared after use locating the device

$HOME/.cache/s+ow/location.gps.json will be cleared after use locating the device

$HOME/.cache/s+ow/location.json will be cleared after use locating the device

$HOME/.cache/s+ow/surplus.out.log will be cleared after use generating the message

$HOME/.cache/s+ow/surplus.err.log will be set to /dev/null

$HOME/.cache/s+ow/message will be cleared after all bridges has sent the message

the only file not cleared is s+ow's last successful message file, $HOME/.cache/s+ow/last , as s+ow uses

this as the first fallback message if it couldn't locate the device in time. if you're fine with using the

LOCATION_FALLBACK string, feel free to modify your cron job to remove this file after running s+ow

se�ing it to n will also be treated as if it were empty

�. SURPLUS_CMD (optional)

the custom invocation used when calling surplus, modify this if you want to add certain flags

this defaults to surplus -td

when overriding, ensure you also have -td (--using-termux-location and --debug) in your custom

invocation!

�. LOCATION_CMD (optional)

the custom invocation used when calling termux-location , modify this if you want to bodge together

surplus on wheels on non-termux systems. see (emulating termux-location) for more information

this defaults to termux-location

�. LOCATION_PRIORITISE_NETWORK (optional)

set as non-empty to declare that s+ow can just use network location instead of GPS if GPS is taking

too long.

you should only turn this on if punctuality means that much to you, or you’re in a country with cell

towers close by or everywhere, like Singapore

the JIDs can be obtained by sending a message to the user/group, while running s+ow mdtest , and

examining the output for your message. JIDs are email address-like strings

Warning

Warning

https://surplus.joshwel.co/onwheels/emulating-termux-location/

se�ing it to n will also be treated as if it were empty

�. LOCATION_TIMEOUT (optional)

set as a number to override the default first location timeout of 50

�. LOCATION_FALLBACK (optional)

a string that can be forma�ed with three numbers using %d :

a. s+ow's status

b. number of location a�empts before giving up

c. type of message sent

see details on notification numbers for the meanings of each number. 'a', 'b' and 'c' map to A , B and

C

defaults to %d%d%d?

faking locations

sometimes you go�a do what you go�a do

you can fake your s+ow messages by either:

�. se�ing a dummy last file in s+ow cache

$HOME/.cache/s+ow/last is used as the fallback response when a part of s+ow (either termux-

location or surplus errors out). you can set this file to whatever you want and just turn o� location

on your device

�. se�ing a fake file in s+ow cache

s+ow uses the read command to read the file. as such, it is possible for s+ow to prematurely stop

reading the file if the file does not contain a trailing newline.

you can also write text to $HOME/.cache/s+ow/fake to fake upcoming messages. the file is delimited

by empty lines. as such, arrange the file like so:

Warning

The Clementi Mall

3155 Commonwealth Avenue West

Westpeak Terrace

129588

Southwest, Singapore

Westgate

3 Gateway Drive

Jurong East

608532

Southwest, Singapore

...

on every run of s+ow, the first group of lines will be consumed, and the file will be updated with the

remaining lines. if the file is empty, it will be deleted

details on notification numbers

after each run, or if s+ow had to use a location fallback string, s+ow notifies you:

Run has finished.

Singapore Conference Hall

7 Shenton Way

068809

Central, Singapore

(A, B, C, D)

[lc:W sp:X sm:Y - Z]

(A, B, C, D)

[lc:W sp:X sm:Y - Z]

the top line denotes general statuses:

A : s+ow's status

0 is nominal

1 is a termux-location error

2 is a surplus error

3 is a bridge/message send error

B : number of location a�empts before giving up

C : type of message sent

0 for freshly made sharetext

1 for recycling a previous successful location sharetext (last file)

2 for using fallback template

D : number of bridge failures

E : each bridge's return code

the bo�om line details on how long s+ow spent on each stage:

W : time to locate

X : time to run surplus

surplus on wheels

surplus on wheels has errored

Y : time to send message(s)

Z : total run time

help! a bridge isn't working!

cool. do the following:

�. log out and log back in and try again

�. if that didn't fix it, update/reinstall the bridge and try again

�. run the bridge's executable directly to see if there's any connection issues

look at your bridge's installation instructions to find out where it's located at. or, use the which

command

�. if it connected successfully, or you see no errors, try typing in one of the targets you've set in

SPOW_TARGETS for the bridge, and then press the enter/return key

on the o� chance you reinstalled the bridge, and it still failed either step 3 or 4, the bridge itself is faulty. file

a bug report/issue with the bridge's project page or maintainer and tell them where it failed (was it

connecting to the messaging service? or failure to send a message?)

Failure

