
surplus on wheels: WhatsApp Bridge

WhatsApp Bridge for surplus on wheels (s+ow)

s+ow bridges are defined in a file named $HOME/.s+ow-bridges . each command in the file is run, and

comma-seperated target chat IDs are passed using stdin.

this bridge recognises targets prefixed with wa: .

installation

from a pre-built binary

if wget throws a 404, see backup links

building from source

on Termux

1. clone the repository at either https://forge.joshwel.co/mark/surplus or

https://github.com/markjoshwel/surplus , and navigate to src/spow-whatsapp-bridge within the

cloned repository

2. build the bridge:

for compatibility with the documentations' instructions as-is, rename the built binary to s+ow-

whatsapp-bridge

wa:<chat id>,...

wget -O- https://surplus.joshwel.co/whatsapp.sh | sh

Note

git clone https://forge.joshwel.co/mark/surplus

cd surplus/src/spow-whatsapp-bridge

go build

mv spow-whatsapp-bridge s+ow-whatsapp-bridge

https://surplus.joshwel.co/links/

3. send the built binary over to your Termux environment, and then move it into the $HOME/.local/bin/

folder. if it doesn't exist, make it with mkdir and ensure that the folder is in your PATH variable either

using your .profile , .bashrc or whatever file is sourced when opening your shell

anywhere else

for usage on Termux, see if the Android NDK supports your platform

1. grab a copy of the NDK, and extract it somewhere. navigate to <ndk

folder>/toolchains/llvm/prebuilt/<your platform>/bin and look for a suitable clang executable,

as it will be your CGO compiler

the example output is not exhaustive and is cut short for brevity and example, do take a look at your

downloaded NDK archive for what executables are available to you

many executables are present, so choose a) what architecture you will build for (more often than not

it's aarch64), and b) what target android api are you building for

if you're building for yourself, pick an api level/version that correlates to your devices' android version.

as an example, my device runs on an ARM processor (aarch64) and runs Android 14, which is api level

34. (android34) as such, i would use the aarch64-linux-android34-clang binary

2. clone the repository at either https://forge.joshwel.co/mark/surplus or

https://github.com/markjoshwel/surplus , and navigate to src/spow-whatsapp-bridge within the

cloned repository

3. build the bridge:

for compatibility with the documentations' instructions as-is, rename the built binary to s+ow-

whatsapp-bridge

4. send the built binary over to your Termux environment, and then move it into the $HOME/.local/bin/

folder. if it doesn't exist, make it with mkdir and ensure that the folder is in your PATH variable either

using your .profile , .bashrc or whatever file is sourced when opening your shell

m@csp:~/android-ndk-r26d/toolchains/llvm/prebuilt/linux-x86_64/bin$ ls *clang

aarch64-linux-android21-clang aarch64-linux-android30-clang ...

aarch64-linux-android22-clang aarch64-linux-android31-clang

aarch64-linux-android23-clang aarch64-linux-android32-clang

aarch64-linux-android24-clang aarch64-linux-android33-clang

aarch64-linux-android25-clang aarch64-linux-android34-clang

aarch64-linux-android26-clang armv7a-linux-androideabi21-clang

aarch64-linux-android27-clang armv7a-linux-androideabi22-clang

aarch64-linux-android28-clang armv7a-linux-androideabi23-clang

aarch64-linux-android29-clang armv7a-linux-androideabi24-clang

git clone https://forge.joshwel.co/mark/surplus

cd surplus/src/spow-whatsapp-bridge

CC="<path to android ndk clang executable>" GOOS=android GOARCH=arm64 CGO_ENABLED=1 go

build

mv spow-whatsapp-bridge s+ow-whatsapp-bridge

https://developer.android.com/ndk/downloads

post-installation setup

1. log into WhatsApp:

give it a minute or two to sync your history. once the screen stops scrolling, you can safely exit with

Ctrl+D or Ctrl+C.

2. find out what chats you want the bridge to target:

for sending to individuals: their IDs are their internationalised phone numbers ending in

@s.whatsapp.net

example: +65 9123 4567 is 6591234567@s.whatsapp.net

then, note these down, prefixed with wa: , to them to your SPOW_TARGETS variable in your s+ow cron

job

3. finally, add the following to your $HOME/.s+ow-bridges file:

updating

to keep updated as whatsmeow, the library the bridge depends on, has to keep updated with the

WhatsApp web multidevice API, you can either:

1. rebuild when a weekly release comes out,

2. or rely on the weekly continuous deployment builds

to use the weekly builds without building from scratch every time,

this will pull the latest binary, around 20 megabytes in size, every day. if your network or data plan may not

take kindly to this, feel free to adjust the cron entry as you wish, or to one that runs once a week instead:

usage

s+ow-whatsapp-bridge login

s+ow-whatsapp-bridge list

Note

s+ow-whatsapp-bridge

Note

0 0 * * 0 bash -l -c "s+ow-whatsapp-bridge-update"

https://github.com/tulir/whatsmeow/

s+ow-whatsapp-bridge

normal usage; sends latest message to wa:-prefixed targets given in stdin

s+ow-whatsapp-bridge login

logs in to WhatsApp

s+ow-whatsapp-bridge pair-phone

logs in to WhatsApp using a phone number

s+ow-whatsapp-bridge reconnect

reconnects the client

s+ow-whatsapp-bridge logout

logs out of WhatsApp

s+ow-whatsapp-bridge list

lists all group chats and their IDs.

for sending to individuals: their IDs are their internationalised phone numbers ending in

@s.whatsapp.net

example: +65 9123 4567 is 6591234567@s.whatsapp.net

verifying a pre-built binary

if you installed the bridge through an installation script, it would have already

and if the script or s+ow-whatsapp-bridge-update throws an error about failing verification, you can use the

environment variable ``

TODO

versioning scheme

from v2.2024.25 , the bridge is now versioned with a modified calendar versioning scheme of

MAJOR.YEAR.ISOWEEK , where the MAJOR version segment will be bumped with codebase changes, whereas

the YEAR and ISOWEEK segments will represent the time of which the release was built at

licence

the s+ow Telegram Bridge is free and unencumbered software released into the public domain. for more

information, see licences.

Note

https://surplus.joshwel.co/licences/

